- математическое ожидание
-
математическое ожидание
—
[http://www.iks-media.ru/glossary/index.html?glossid=2400324]
математическое ожидание
Одна из численных характеристик случайной величины, часто называемая ее теоретической средней. Для дискретной случайной величины X математическое ожидание равно сумме произведений возможных значений этой величины на их вероятности: Мх= ?хР(х) , а для непрерывной случайной величины — интегралу Обозначается обычно: Mx или Ex (в нашем словаре принято первое из этих обозначений). См. также Среднее значение. Математическое программирование [mathematical programming] - (см. также Оптимальное программирование) — раздел математики, который «… изучает методы решения задач на нахождение экстремума функций (показателя качества решения) при ограничениях в форме уравнений и неравенств»[1]. Оно объединяет различные математические методы и дисциплины исследования операций: линейное программирование, нелинейное программирование, динамическое программирование, выпуклое программирование, геометрическое программирование, целочисленное программирование и др. Общая задача М.п. состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений (см. Область допустимых решений). В самом общем виде задача записывается так: U = f(x) ? max; x ? M, где x = (x1, x2,…, xn); M — область допустимых значений переменных x1,…, xn; f(x) — целевая функция. Частный случай задачи М.п. — «классическая задача». В ней область M представлена равенствами: g(x) = b, где g(x) — вектор функций ограничений, b — вектор констант ограничений. Названные выше разнообразные дисциплины отличаются друг от друга видом целевой функции f(x) и области М. Например, если f(x) и M — линейны, имеем задачу линейного программирования; если же дополнительно ставится условие, чтобы переменные были целочисленны, имеем задачу целочисленного программирования; если зависимость U от x (т.е. форма f) носит нелинейный характер — задачу нелинейного программирования. Развивающаяся область — стохастическое программирование, задачи которого в отличие от детерминированных характеризуются тем, что их исходные данные (все или часть) — суть случайные величины. [1] Математический аппарат экономического моделирования. М.: “Наука”, 1983, стр 8.
[http://slovar-lopatnikov.ru/]Тематики
- экономика
- электросвязь, основные понятия
EN
- expectation
- expected value
Справочник технического переводчика. – Интент. 2009-2013.
МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ — (expected value) Среднее значение распределения экономической переменной, которые она, может принимать. Если рt – цена товара в момент времени t, ее математическое ожидание обозначается – Ept. Для указания момента времени, к которому относится… … Экономический словарь
Математическое ожидание — среднее значение случайной величины. Математическое ожидание является детерминированной величиной. Среднее арифметическое значение из реализаций случайной величины представляет собой оценку математического ожидания. Среднее арифметическое… … Официальная терминология
Математическое ожидание — [expected value] одна из численных характеристик случайной величины, часто называемая ее теоретической средней Для дискретной случайной величины X математическое ожидание равно сумме произведений возможных значений этой величины на их… … Экономико-математический словарь
МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ — среднее значение, понятие теории вероятностей, важнейшая характеристика распределения значений случайной величины Х. В простейшем случае, когда Х может принимать лишь конечное число значений x1, x2, ..., xn с вероятностями p1, p2, ..., pn,… … Большой Энциклопедический словарь
МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ — (среднее значение) случайной величины числовая характеристика случайной величины. Если случайная величина, заданная на вероятностном пространстве (см. Вероятностей теория), то её M. о. MX (или EX )определяется как интеграл Лебега: где … Физическая энциклопедия
МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ — случайной величины есть ее числовая характеристика. Если случайная величина X имеет функцию распределения F(x), то ее М. о. будет: . Если распределение X дискретно, то М.о.: , где x1, х2, ... возможные значения дискретной случайной величины X; p1 … Геологическая энциклопедия
МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ — англ. expected value; нем. Erwartung mathematische. Стохастическая средняя или центр рассеивания случайной величины. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии
Математическое ожидание — (Population mean) Математическое ожидание – это распределение вероятностей случайной величины Математическое ожидание, определение, математическое ожидание дискретной и непрерывной случайных величин, выборочное, условное матожидание, расчет,… … Энциклопедия инвестора
Математическое ожидание — См. также: Условное математическое ожидание Математическое ожидание среднее значение случайной величины, распределение вероятностей случайной величины, рассматривается в теории вероятностей.[1] В англоязычной литературе и в математических… … Википедия
Математическое ожидание — 1.14 Математическое ожидание Е (X) где xi значения дискретной случайной величины; р = Р (Х = xi); f(x) плотность непрерывной случайной величины * Если это выражение существует в смысле абсолютной сходимости Источник … Словарь-справочник терминов нормативно-технической документации